Thursday, 15 March 2012

History of modern mathematics

HISTORY OF MODERN MATHEMATICS

One of the more colorful figures in 20th century mathematics was Srinivasa Aiyangar Ramanujan (1887–1920), an Indian autodidact who conjectured or proved over 3000 theorems, including properties of highly composite numbers, the partition function and its asymptotics, and mock theta functions. He also made major investigations in the areas of gamma functions, modular forms, divergent series, hypergeometric series and prime number theory.

Paul Erdős published more papers than any other mathematician in history, working with hundreds of collaborators. Mathematicians have a game equivalent to the Kevin Bacon Game, which leads to the Erdős number of a mathematician. This describes the "collaborative distance" between a person and Paul Erdős, as measured by joint authorship of mathematical papers.

As in most areas of study, the explosion of knowledge in the scientific age has led to specialization: by the end of the century there were hundreds of specialized areas in mathematics and the Mathematics Subject Classification was dozens of pages long.[131] More and more mathematical journals were published and, by the end of the century, the development of the world wide web led to online publishing.
[edit] 21st century

In 2000, the Clay Mathematics Institute announced the seven Millennium Prize Problems, and in 2003 the Poincaré conjecture was solved by Grigori Perelman (who declined to accept any awards).

Most mathematical journals now have online versions as well as print versions, and many online-only journals are launched. There is an increasing drive towards open access publishing, first popularized by the arXiv.
[edit] Future of mathematics
Main article: Future of mathematics

There are many observable trends in mathematics, the most notable being that the subject is growing ever larger, computers are ever more important and powerful, the application of mathematics to bioinformatics is rapidly expanding, the volume of data to be analyzed being produced by science and industry, facilitated by computers, is explosively expandin




BY; farah wahidah anuar
                                                  Prehistoric mathematics

The origins of mathematical thought lie in the concepts of number, magnitude, and form.[11] Modern studies of animal cognition have shown that these concepts are not unique to humans. Such concepts would have been part of everyday life in hunter-gatherer societies. The idea of the "number" concept evolving gradually over time is supported by the existence of languages which preserve the distinction between "one", "two", and "many", but not of numbers larger than two.[11]

The oldest known possibly mathematical object is the Lebombo bone, discovered in the Lebombo mountains of Swaziland and dated to approximately 35,000 BC.[12] It consists of 29 distinct notches cut into a baboon's fibula.[13] Also prehistoric artifacts discovered in Africa and France, dated between 35,000 and 20,000 years old,[14] suggest early attempts to quantify time.[15]

The Ishango bone, found near the headwaters of the Nile river (northeastern Congo), may be as much as 20,000 years old and consists of a series of tally marks carved in three columns running the length of the bone. Common interpretations are that the Ishango bone shows either the earliest known demonstration of sequences of prime numbers[13] or a six month lunar calendar.[16] In the book How Mathematics Happened: The First 50,000 Years, Peter Rudman argues that the development of the concept of prime numbers could only have come about after the concept of division, which he dates to after 10,000 BC, with prime numbers probably not being understood until about 500 BC. He also writes that "no attempt has been made to explain why a tally of something should exhibit multiples of two, prime numbers between 10 and 20, and some numbers that are almost multiples of 10."[17]

Predynastic Egyptians of the 5th millennium BC pictorially represented geometric designs. It has been claimed that megalithic monuments in England and Scotland, dating from the 3rd millennium BC, incorporate geometric ideas such as circles, ellipses, and Pythagorean triples in their design.[18]

All of the above are disputed however, and the currently oldest undisputed mathematical usage is in Babylonian and dynastic Egyptian sources. Thus it took human beings at least 45,000 years from the attainment of behavioral modernity and language (generally thought to be a long time before that) to develop mathematics as such.
[edit] Babylonian mathematics
Main article: Babylonian mathematics
See also: Plimpton 322
The Babylonian mathematical tablet Plimpton 322, dated to 1800 BC.

Babylonian mathematics refers to any mathematics of the people of Mesopotamia (modern Iraq) from the days of the early Sumerians through the Hellenistic period almost to the dawn of Christianity.[19] It is named Babylonian mathematics due to the central role of Babylon as a place of study. Later under the Arab Empire, Mesopotamia, especially Baghdad, once again became an important center of study for Islamic mathematics



                                                             by: vanitha perumal

Tuesday, 13 March 2012

History of Mathematics, Part II

Babylonian Mathematics
Babylonian mathematics refers to any mathematics of the people of Mesopotamia (modern Iraq) from the days of the early Sumerians through the Hellenistic period almost to the dawn of Christianity. It is named Babylonian mathematics due to the central role of Babylon as a place of study. Later under the Arab Empire, Mesopotamia, especially Baghdad, once again became an important center of study for Islamic mathematics. 


Egyptian Mathematics
Egyptian mathematics refers to mathematics written in the Egyptian language. From the Hellenistic periodGreek replaced Egyptian as the written language of Egyptian scholars. Mathematical study in Egypt later continued under the Arab Empire as part of Islamic mathematics, when Arabic became the written language of Egyptian scholars. 


Greek Mathematics

Greek mathematics refers to the mathematics written in the Greek language from the time of Thales of Miletus (~600 BC) to the closure of the Academy of Athens in 529 AD. Greek mathematicians lived in cities spread over the entire Eastern Mediterranean, from Italy to North Africa, but were united by culture and language. Greek mathematics of the period following Alexander the Great is sometimes called Hellenistic mathematics.
Greek mathematics was much more sophisticated than the mathematics that had been developed by earlier cultures. All surviving records of pre-Greek mathematics show the use of inductive reasoning, that is, repeated observations used to establish rules of thumb. Greek mathematicians, by contrast, used deductive reasoning. The Greeks used logic to derive conclusions from definitions and axioms, and used mathematical rigor to prove them.

Chinese Mathematics
Early Chinese mathematics is so different from that of other parts of the world that it is reasonable to assume independent development. The oldest extant mathematical text from China is the Chou Pei Suan Ching, variously dated to between 1200 BC and 100 BC, though a date of about 300 BC appears reasonable 

Islamic Mathematics
The Islamic Empire established across Persia, the Middle East, Central Asia, North Africa, Iberia, and in parts of India in the 8th century made significant contributions towards mathematics. Although most Islamic texts on mathematics were written in Arabic, most of them were not written by Arabs, since much like the status of Greek in the Hellenistic world, Arabic was used as the written language of non-Arab scholars throughout the Islamic world at the time.Persians contributed to the world of Mathematics alongside Arabs. 

Indian Mathematics
Indian mathematics emerged in the Indian subcontinent from 1200 BC until the end of the 18th century. In the classical period of Indian mathematics (400 AD to 1200 AD), important contributions were made by scholars like Aryabhata, Brahmagupta, and Bhaskara II. The decimal number system in use today was first recorded in Indian mathematics. Indian mathematicians made early contributions to the study of the concept of zero as a number, negative numbers, arithmetic, and algebra. In addition, trigonometry was further advanced in India, and, in particular, the modern definitions of sine and cosine were developed there. These mathematical concepts were transmitted to the Middle East, China, and Europe and led to further developments that now form the foundations of many areas of mathematics. 

Nadiah Roslan